Automated Submerged Arc Welding Applications
Pt. 1

Jim Walker
Welding Technician

ARC Specialties Applied Automation Workshop – Submerged Arc Welding
March 5, 2013
Platforms and Applications

• SAW Manipulator
 Lab Machine

• PLC
 Connector Welding

• Robotics
 BOP Surfacing
 Ring Groves
 Oil Storage Tank Welding
SAW Manipulator

ARC R&D Manipulator
SAW Manipulator

1. Separate controls for welding, boom manipulating and part rotation
2. Welding controller controls manipulator and/or rotary axis

- Simple parts
- Stepover, inconsistent and un-repeatable
 Hand wheel or speed of motor and time
• Seam tracking can be added
• Completely separate from the rest of the machine
• Separate stand alone slide package
• Tactile probe or laser
• Manipulators are simple but completely manual sequencing and motion control
ARC Specialties connector welding
PLC

• Programmable Logic Control
• Solves Process Control Problems
• Controls welding, travel, stepover and more
• Motion controlled in inches, millimeters, degrees
• More complex welds than a manipulator

• Position feedback
• Self centering pipe joint
• PLC Controls the
 • Volts
 • Wire feed speed
 • Travel speed; linear and rotation
 • Crater fill
 • Start delay
 • Bead placement, stepover

• Torch placement, seam tracking
 • Flux system
 • Cart pressure
 • Pipe position
 • Camera
 • Lights
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weld Volts</td>
<td>32</td>
<td>0.0-50.0 Volts</td>
</tr>
<tr>
<td>C-Axis Speed</td>
<td>17.5</td>
<td>0-50.0 IPM</td>
</tr>
<tr>
<td>Wire Feed Speed</td>
<td>83</td>
<td>0-200 IPM</td>
</tr>
<tr>
<td>Calculated Amps From Wire Speed</td>
<td>475</td>
<td>0-50.0 IPM</td>
</tr>
<tr>
<td>Schedule</td>
<td>32</td>
<td>(1-140)</td>
</tr>
<tr>
<td>C-Axis On Delay</td>
<td>2.0</td>
<td>0-20.0 secs</td>
</tr>
<tr>
<td>C-Axes Off Delay</td>
<td>1.5</td>
<td>0-10.0 secs</td>
</tr>
<tr>
<td>Flux Vacuum</td>
<td>Off</td>
<td>ON/OFF</td>
</tr>
</tbody>
</table>

ARC Applied Automation - Submerged Arc - 2013
PLC Bead placement

<table>
<thead>
<tr>
<th>PASS</th>
<th>SCHEDULE</th>
<th>DEGREES</th>
<th>STEP UP</th>
<th>OFFSET</th>
<th>DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>365.0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CW</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CCW</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>365.0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CCW</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>365.0</td>
<td>+0.25</td>
<td>-0.38</td>
<td>CCW</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>365.0</td>
<td>+0.25</td>
<td>+0.50</td>
<td>CCW</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CCW</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CCW</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CCW</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CCW</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>+0.00</td>
<td>+0.00</td>
<td>CCW</td>
</tr>
</tbody>
</table>

ARC Applied Automation - Submerged Arc - 2013
Robotic SAW

BOP Surfacing, Ring Grooves, Tank welding
Robotic SAW

• Complex part geometries
• Excellent repeatability position and parameters
• Very versatile, torch manipulation
• Programming can be complex
 HMI
 Vision
 Touch sensing
 Through the Arc tracking
Robotic SAW BOP Surfacing

• Complex part geometry required touch sensing
• Multiple weld beads required the use of a preprocessor
Robotic SAW BOP Surfacing

• Robot Controls the
 • Volts
 • Wire feed speed
 • Travel speed; linear and Cylindrical
 • Crater fill
 • Start delay
 • Bead placement, stepover

• Torch placement
 • Flux system
 • Robot transport unit
 • Touch sensing
 • Part locating
 • Light curtain
Robotic SAW

Ring Grooves
Robotic SAW Ring Grooves

• Higher deposition rate than other processes
• Robot is able to weld a variety of shapes while maintaining a constant travel speed
• Repeatability of robots is put to good use once the first ring groove is programmed
Robotic SAW Ring Grooves

- Robot Controls the
 - Volts
 - Wire feed speed
 - Travel speed; linear
 - Crater fill
 - Start delay
 - Bead placement, stepover

- Torch placement
Robotic SAW

Tank Welding
Robotic SAW Tank Welding

• Moving the robot required touch sensing to locate the joint
• ARC created an HMI for ease of programming
• Robot completed multiple tasks per weld seam
Robotic SAW Tank Welding

- Robot Controls the
 - Volts
 - Wire feed speed
 - Travel speed; linear
 - Crater fill
 - Start delay
 - Bead placement, stepover
 - Torch placement

- Flux system
- Touch sensing
- Wire brush
- Light curtain
- Stabilizing legs
- Suction cup feet