Effects of Process Variables on HAZ Hardness

Richard Holdren, PE/Senior Welding Engineer
Ithamar Glumac, Welding Engineer

ARC Specialties Applied Automation Workshop – Submerged Arc Welding
March 5, 2013
The art of qualifying CROs

• Qualification of welding procedures to satisfy ASME, API and NACE requirements can be a challenge, especially when applied to heat-treatable (hardenable) steel alloys.

• When applying the first layer, must balance between use of a low heat input rate to minimize dilution and prevention of high hardness in the heat-affected zone (HAZ).
Understanding the metallurgy

• HAZ properties dependent on
 – Base metal chemistry \(\text{carbon equivalent (CE)} \)
 – Base metal thickness
 – Welding process variables affecting cooling rate
 • Heat input rate
 • Preheat temperature

• Once understood the process variables affect the outcome, use of automated welding will guarantee success
Base metal chemistry

• Composition of steel will determine its reaction to heat treatment
• Various alloying elements will increase steel’s hardenability
• Carbon content has the dominant effect, but other elements also contribute
 • Manganese
 • Chromium
 • Nickel
 • Molybdenum
• Calculation of carbon equivalent (CE) is a means of factoring the effects of all alloying elements in relation to carbon content

• Numerous CE formulas exist, but the one below was adopted by IIW in 1967 and is widely recognized

\[
CE = \%C + \frac{\%Mn}{6} + \frac{(\%Cr + \%Mo + \%V)}{5} + \frac{(\%Ni + \%Cu)}{15}
\]
CE for 4130

• Based on minimum and maximum chemistries for AISI 4130, a range of CE
 – Min 0.537
 – Max 0.700
Test results - HAZ hardness

• CE for 4130 test coupon / 500° F preheat
 – 0.637
 – HAZ hardnesses (HV$_{10}$)
 – 4hr PWHT 245/250/248
 – 12hr PWHT 238/240/238

• CE for 4130 test coupon / 500° F preheat
 – 0.676
 – HAZ hardnesses (HV$_{10}$)
 – 3hr PWHT 247/249/249
 – 6hr PWHT 225/230/243
• Relationships
 – For given CE: \(\uparrow CR \Rightarrow \uparrow HAZ \) hardness
 – \(\downarrow HIR \Rightarrow \uparrow CR \Rightarrow \uparrow HAZ \) hardness

• However
 – Need to keep HIR low to minimize dilution to make chemistry
 – So, to make chemistry (which requires low HIR) and meet hardnesses in HAZ, need to somehow slow down cooling rate
Potential solution

• One way to slow down cooling rate is to increase the preheat temperature
• To better understand the behavior of this material and how it reacts to heating and subsequent cooling is to review the continuous cooling diagram
4130 CCT diagram

Chromium-Molybdenum Steels: 4130

ARC Applied Automation - Submerged Arc - 2013
Overlay test welds were applied to 4130 material using GTAW-HW.

Base metal CE = 0.656

Preheat temperatures: 400° F, 500° F, 600° F, and 700° F

Checked hardnesses in as-welded and PWHT condition (4hr holding time at 1175° F)
• Tested hardesses of HAZs both with single and double layers of overlay
 - To determine the degree of tempering realized from the second layer
• Tested both “peaks” and “valleys”
• Used Knoop microhardness testing (500g load) to allow for more localized determination of hardesses
Hardness testing

1 Pass Peak

<table>
<thead>
<tr>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.75</td>
</tr>
<tr>
<td>.50</td>
</tr>
<tr>
<td>.25</td>
</tr>
<tr>
<td>WI</td>
</tr>
<tr>
<td>-.25</td>
</tr>
<tr>
<td>-.50</td>
</tr>
<tr>
<td>-.75</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>-1.5</td>
</tr>
<tr>
<td>-2</td>
</tr>
</tbody>
</table>

2 Pass Peak

<table>
<thead>
<tr>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.75</td>
</tr>
<tr>
<td>.50</td>
</tr>
<tr>
<td>.25</td>
</tr>
<tr>
<td>WI</td>
</tr>
<tr>
<td>-.25</td>
</tr>
<tr>
<td>-.50</td>
</tr>
<tr>
<td>-.75</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>-1.5</td>
</tr>
<tr>
<td>-2</td>
</tr>
</tbody>
</table>
Hardness testing

1 Pass Valley

2 Pass Valley

ARC Applied Automation - Submerged Arc - 2013
Detailed hardness results

ARC Applied Automation - Submerged Arc - 2013
Detailed hardness results

1 Pass Valley

- HK 500gf 15sec
- 250 HV10

WI - .25mm, -.50 mm, -.75mm, -1 mm, -1.5 mm, -2 mm

Graph showing hardness results for different conditions.
Detailed hardness results

ARC Applied Automation - Submerged Arc - 2013
Summary

• Base metal carbon equivalent (CE) important
 – If maximum CE material used for qualification, production welding on lower CE material will yield acceptable results
• To achieve the required HAZ hardness, preheat temperature is the most critical variable
• Tempering effect of second layer critical as well
• Preheating at 600° F or above could provide acceptable results, even without PWHT
 – PWHT effects on HAZ hardness secondary
 – Per ASME Section IX, production welding can be performed using 500° F minimum preheat temperature