Sense & Nonsense of Welding Procedure Qualification

Richard L. Holdren, PE / SCWI / IWE
ARC Specialties Engineering & Consulting Services
Chair, AWS Technical Activities Committee
Experience

• ‘73 graduate of TOSU
• Employment experience
 – 35+ years at three different consulting companies in Columbus, Ohio including 11 years at EWI
 – Currently Senior Welding Engineer of ARC Specialties Engineering & Consulting Services
• Joined first AWS committee in 1978
 – Member: Education, A2, B1, D1, D14, and TAC
 – Currently Chair of A2b (Terms & Definitions) and TAC
AWS technical committees

• Technical Activities Committee (TAC)
 – Guides development and maintenance of all AWS technical standards
 – Consists of the Chairs of all AWS technical committees plus 6 at-large members
 – Assures that the AWS standards comply with ANSI standards
 • Developed by a “balanced” committee membership
 • Reviewed and either revised or reinstated in compliance with the ANSI 5-year renewal rule
Introduction

• Most of this presentation was originally presented at AWS Codes & Standards Conference in Orlando in July

• Original plan was to discuss the Technical Activities Committee’s efforts over the past 10+ years to standardize the manner in which welding procedures are qualified
 – And to bring attention to AWS B2.1, Standard for Welding Procedure and Performance Qualification
• What has evolved however is a more global look at the qualification activity we are all engaged in at one time or another

• For this presentation, I have provided a local flavor by discussing the Houston way of qualifying procedures for corrosion-resistant overlays (CROs)
More than 10 years ago, upon the urgings of Walt Sperko, TAC sought to minimize the differences among AWS fabrication standards with regard to welding procedure qualification

– More than a dozen standards addressed procedure qualification

– All the same but different

Standards committees urged to embrace AWS B2.1
AWS B2.1

• AWS’s version of ASME Section IX
• Desirable features
 – M-number groupings (comparable to P-numbers)
 – Position **not** an essential variable
 – Means of qualifying fillet welds for both strength and soundness in a single testpiece
 – Simplified, standardized testing requirements
• A concentration on essential variables affecting metallurgical characteristics of a welding procedure
One of the most powerful extensions of AWS B2.1 is the Standard Welding Procedure Specification (SWPS)

- Based on multiple previously qualified procedure qualification records (PQRs)
- SWPS limitations are the most stringent of all those PQRs
- The Navy is developing a series of SWPSs for use by contractors and their suppliers
- This same approach has been suggested for future nuclear construction
D14 — Leading the charge

- D14 standards provide fabrication requirements for a variety of equipment, including: cranes, presses, construction & agriculture equipment, and rotating elements of equipment
 - In D14.3, the base metal groupings portion of the document was bigger than the rest of the document
 - The 2005 edition of D14.3 specified B2.1 as the qualification standard and allowed the use of Standard Welding Procedure Specifications (SWPSs)
 - B2.1-BMG published as separate document and is available as a free download on AWS website

Houston AWS Section—9.18.13 - 9
Status of this harmonization effort

• Those accepting procedures qualified per B2.1
 – D14.1 through D14.8
 – D1.1 and D1.3 (with Engineer’s approval)
 – D1.6 (if conflicts exist, D1.6 requirements prevail)
 – D9.1

• Those specifying B2.1 for qualification
 – D14.3
 – D17.1

• Success???
Lessons learned

• Too busy looking for differences to see the common aspects
• Legacy is powerful
• Often people expect more than a welding procedure can provide
 – The manner in which a procedure is qualified becomes insignificant if it isn’t followed
What is a welding procedure?

• It’s a “recipe” for the creation of an acceptable weld
 – It specifies the “ingredients” and instructions how they are combined

• The essential variables for welding procedures should be those factors that can affect the metallurgical result of the welding process
 – We are trying to establish weldability
Excessive essential variables

• Specifying essential variables that have no effect on the metallurgical properties of the weld just add cost
 – Examples include:
 • Position of welding
 • Base metal specivity
 • Industry/application specivity

• AWS B2.1 levels the playing field and, like ASME Section IX, pays attention to the variables that matter
 – Provides a means of addressing production constraints that could reduce the potential for success of a procedure
 – Provides a means of qualification that is not application-specific
Practical benefits of AWS B2.1

- Procedures recognized by multiple AWS standards, as well as ASME
- Flat position qualifies all positions
- Plate qualifies pipe without diameter limitation
- Base metal groupings (consistent with ASME Section IX)
- \(\frac{3}{4} \) in weld thickness with 1\(\frac{1}{2} \) in test coupon qualifies up to 8 in thick
Overcoming the roadblocks

• D1.1 is the elephant in the room
 – It’s all about what’s different
 – Don’t want to require their customers to buy another book
 – Major stumbling blocks
 • Position ⇒ essential variable for toughness applications
 • Material grouping ⇒ use B2.1-BMG
 • Essential variables ⇒ use existing Table 4.5
• Too much emphasis on qualification, but too little attention given to the control and performance of a WPS
 – Deficiencies in the control and verification of production welding is what can easily lead to weld rejects
 – Monitoring the performance of a qualified WPS in the production environment is critical to assure that the process can be operated successfully
Invest wisely

- Rather than requalifying a procedure, perform auxiliary testing to enhance the procedure
 - Verify the specified ranges of an existing procedure
 - Like D1.5 min-max heat input rate (HIR)
 - Verify the ability of a qualified procedure under production conditions
 - Use mock-ups to simulate specific joint configurations and/or inaccessibility
 - Recommended as alternate qualification approach by B2.1, D14.3 and D17.1
B2.1 Summary

• Let’s take advantage of the flexibility offered by procedures qualified in accordance with B2.1
• Let’s quit wasting our money retesting the same procedures over and over again
• Requalification of a procedure does not guarantee success as much as careful monitoring of existing procedures
• Since entering the Houston market, have been re-educated regarding qualification
• ARC E&C works with its customers to develop and qualify welding procedures for use on their equipment
 – Both overlay and “strength” welds
Qualification requirements

• Must satisfy ASME, API, and NACE requirements
 – Plus the variations and interpretations of the OEMs
 – To develop an effective qualification program, must consider of all of these requirements
 – Finding materials, especially welding filler materials, to meet these requirements is a challenge
Qualification issues

• **Use of *boutique* test materials**
 – Pretested materials can be purchased for qualification
 – Heat-treated to withstand long PWHT times
 – No concern for Carbon Equivalent (CE)
 – More importantly, no limitation for CE of production materials

• *CE should be included on PQRs and become a limitation of WPS*
• Chemical composition determines how a steel will react to heat treatment and preheat
 – CE = %C + (%Mn+%Si)/6 + (%Cr+%Mo+%V)/5 + (%Ni+%Cu)/15
 – Higher the CE ⇒ higher preheat temperature

<table>
<thead>
<tr>
<th></th>
<th>4130 Min Spec</th>
<th>4130 Max Spec</th>
<th>Pipe 4130</th>
<th>Pipe 4130</th>
<th>Pipe 4130</th>
<th>Plate 4130</th>
<th>Plate 4130</th>
<th>Plate 4130</th>
<th>Plate 4130</th>
<th>4130</th>
<th>Pipe 4130</th>
<th>Pipe 4130</th>
<th>Pipe 4130</th>
<th>Plate 4130</th>
<th>Plate 4130</th>
<th>Block F-22</th>
<th>Pipe F-22</th>
<th>Pipe 8630</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>0.28</td>
<td>0.33</td>
<td>0.31</td>
<td>0.30</td>
<td>0.31</td>
<td>0.29</td>
<td>0.30</td>
<td>0.30</td>
<td>0.31</td>
<td>0.33</td>
<td>0.30</td>
<td>0.31</td>
<td>0.30</td>
<td>0.31</td>
<td>0.33</td>
<td>0.15</td>
<td>0.12</td>
<td>0.32</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.40</td>
<td>0.60</td>
<td>0.58</td>
<td>0.54</td>
<td>0.55</td>
<td>0.59</td>
<td>0.54</td>
<td>0.54</td>
<td>0.55</td>
<td>0.57</td>
<td>0.51</td>
<td>0.57</td>
<td>0.58</td>
<td>0.53</td>
<td>0.44</td>
<td>0.84</td>
<td>0.32</td>
<td>0.27</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.15</td>
<td>0.35</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.29</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.28</td>
<td>0.23</td>
<td>0.28</td>
<td>0.32</td>
<td>0.33</td>
<td>0.25</td>
<td>0.27</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Mn + Si/6</td>
<td>0.092</td>
<td>0.158</td>
<td>0.138</td>
<td>0.132</td>
<td>0.131</td>
<td>0.147</td>
<td>0.140</td>
<td>0.125</td>
<td>0.143</td>
<td>0.140</td>
<td>0.092</td>
<td>0.145</td>
<td>0.123</td>
<td>0.142</td>
<td>0.150</td>
<td>0.097</td>
<td>0.143</td>
<td>0.115</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.80</td>
<td>1.10</td>
<td>0.83</td>
<td>1.03</td>
<td>1.00</td>
<td>0.98</td>
<td>0.97</td>
<td>0.93</td>
<td>0.97</td>
<td>0.97</td>
<td>1.00</td>
<td>1.06</td>
<td>0.99</td>
<td>1.03</td>
<td>1.07</td>
<td>2.22</td>
<td>2.17</td>
<td>0.89</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.15</td>
<td>0.25</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.16</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
<td>0.18</td>
<td>0.22</td>
<td>0.24</td>
<td>0.21</td>
<td>0.23</td>
<td>0.22</td>
<td>0.22</td>
<td>1.01</td>
<td>0.96</td>
</tr>
<tr>
<td>Vanadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.030</td>
<td>0.030</td>
<td>0.008</td>
<td>0.006</td>
<td>0.005</td>
<td>0.002</td>
<td>0.026</td>
<td>0.026</td>
<td>0.027</td>
<td>0.280</td>
<td>0.006</td>
<td>0.001</td>
<td>0.011</td>
</tr>
<tr>
<td>Cr+Mo+V</td>
<td>0.95</td>
<td>1.35</td>
<td>1.03</td>
<td>1.27</td>
<td>1.22</td>
<td>1.14</td>
<td>1.17</td>
<td>1.14</td>
<td>1.19</td>
<td>1.16</td>
<td>1.22</td>
<td>1.23</td>
<td>1.20</td>
<td>1.31</td>
<td>1.57</td>
<td>3.24</td>
<td>3.13</td>
<td>1.28</td>
</tr>
<tr>
<td>Cr+Mo+V/5</td>
<td>0.19</td>
<td>0.27</td>
<td>0.21</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.23</td>
<td>0.24</td>
<td>0.23</td>
<td>0.24</td>
<td>0.27</td>
<td>0.24</td>
<td>0.26</td>
<td>0.26</td>
<td>0.31</td>
<td>0.65</td>
<td>0.63</td>
<td>0.26</td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.12</td>
<td>0.15</td>
<td>0.16</td>
<td>0.11</td>
<td>0.25</td>
<td>0.19</td>
<td>0.09</td>
<td>0.20</td>
<td>0.16</td>
<td>0.00</td>
<td>0.01</td>
<td>0.17</td>
<td>0.00</td>
<td>0.11</td>
<td>0.16</td>
<td>0.08</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Ni+Cu</td>
<td>0.00</td>
<td>0.00</td>
<td>0.36</td>
<td>0.28</td>
<td>0.44</td>
<td>0.29</td>
<td>0.51</td>
<td>0.39</td>
<td>0.33</td>
<td>0.45</td>
<td>0.44</td>
<td>0.00</td>
<td>0.01</td>
<td>0.38</td>
<td>0.00</td>
<td>0.35</td>
<td>0.08</td>
<td>0.96</td>
</tr>
<tr>
<td>Ni+Cu/15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>Carbon Equivalent</td>
<td>0.562</td>
<td>0.758</td>
<td>0.678</td>
<td>0.705</td>
<td>0.710</td>
<td>0.704</td>
<td>0.719</td>
<td>0.669</td>
<td>0.703</td>
<td>0.701</td>
<td>0.676</td>
<td>0.740</td>
<td>0.664</td>
<td>0.744</td>
<td>0.721</td>
<td>0.729</td>
<td>0.964</td>
<td>0.867</td>
</tr>
</tbody>
</table>
Hardness testing

• NACE MR0175 requires hardness testing
 – Max HAZ hardness = 250 HV\textsubscript{10}
 • “As close to fusion line [weld interface] but no more than 1mm away”
 – Some cases allow the use of HR\textsubscript{C}
 • 22 HR\textsubscript{C} maximum
 • No more than 2mm away from fusion line
 • 22 HR\textsubscript{C} is too close to the point where the HR\textsubscript{C} scale is no longer accurate (20 HR\textsubscript{C})
 – Recommend using Rockwell A-scale
ASME allows WPS preheat temperature to be up to 100°C less than PQR temperature.

For CROs, WPS heat input rate (HIR) permitted to be 10% higher than PQR.

- Permissible to list amps, volts and travel speeds that would result in a higher HIR if the maximum amps & volts and minimum travel speed used.

Use of 32h PWHT for PQR allows for up to 40h WPS limit.
Summary and recommendations

• Develop a consensus qualification standard with consistent, and realistic, requirements
 – Eliminate the “moving target” for suppliers
 – Get input from the ultimate users

• Make CE an essential variable

• Develop a hardness testing requirement that allows for consistency

• Put the emphasis on control of production welding
 --- not procedure qualification!